Nonogram Puzzle: Flower
There is a binary image encrypted in the puzzle. The clue numbers on the top and left show how many groups of filled squares must be in a row. Each number shows how many filled squares does each group contain.
For example, a clue of “1, 3, 6, 5” would mean that there are sets of one, three, six, and five filled squares in a row.
There must be at least one blank square between each group.
Groups can adjoin the edges or shrink back from it.
Left-click to fill the square.
Right-click to point the squares that must stay blank.
00:00:00
2 2 | 4 4 | 4 4 | 4 4 | 3 7 3 | 5 5 5 | 7 7 | 5 1 1 5 | 2 1 2 | 5 1 1 5 | 7 7 | 5 5 5 | 3 7 3 | 4 4 | 4 4 | 4 4 | 2 2 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 2 | ||||||||||||||||||||
4 4 | ||||||||||||||||||||
4 4 | ||||||||||||||||||||
4 4 | ||||||||||||||||||||
3 7 3 | ||||||||||||||||||||
5 5 5 | ||||||||||||||||||||
7 7 | ||||||||||||||||||||
5 1 1 5 | ||||||||||||||||||||
2 1 2 | ||||||||||||||||||||
5 1 1 5 | ||||||||||||||||||||
7 7 | ||||||||||||||||||||
5 5 5 | ||||||||||||||||||||
3 7 3 | ||||||||||||||||||||
4 4 | ||||||||||||||||||||
4 4 | ||||||||||||||||||||
4 4 | ||||||||||||||||||||
2 2 | ||||||||||||||||||||