Nonogram Puzzle: Mouse
There is a binary image encrypted in the puzzle. The clue numbers on the top and left show how many groups of filled squares must be in a row. Each number shows how many filled squares does each group contain.
For example, a clue of “1, 3, 6, 5” would mean that there are sets of one, three, six, and five filled squares in a row.
There must be at least one blank square between each group.
Groups can adjoin the edges or shrink back from it.
Left-click to fill the square.
Right-click to point the squares that must stay blank.
00:00:00
3 | 1 1 | 5 1 | 6 1 | 8 1 | 3 4 1 | 3 5 1 | 3 2 2 1 | 3 2 2 1 | 4 1 2 | 5 2 | 2 1 4 1 | 1 3 4 | 1 9 | 7 1 | 2 2 | 5 | 4 | 2 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | ||||||||||||||||||||
1 1 | ||||||||||||||||||||
1 4 | ||||||||||||||||||||
4 6 | ||||||||||||||||||||
11 3 | ||||||||||||||||||||
8 7 | ||||||||||||||||||||
4 3 5 | ||||||||||||||||||||
3 3 5 | ||||||||||||||||||||
13 | ||||||||||||||||||||
1 5 3 | ||||||||||||||||||||
1 9 3 | ||||||||||||||||||||
1 8 | ||||||||||||||||||||
1 | ||||||||||||||||||||
5 | ||||||||||||||||||||
1 | ||||||||||||||||||||
1 | ||||||||||||||||||||